Global Existence and Blow-Up for a Class of Degenerate Parabolic Systems with Localized Source

نویسندگان

  • Yuzhu Han
  • Wenjie Gao
چکیده

This paper deals with a class of localized and degenerate quasilinear parabolic systems ut = f (u)( u+ av(x0, t)), vt = g(v)( v + bu(x0, t)) with homogeneous Dirichlet boundary conditions. Local existence of positive classical solutions is proven by using the method of regularization. Global existence and blow-up criteria are also obtained. Moreover, the authors prove that under certain conditions, the solutions have global blow-up property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Blow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations

This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources. MSC: 35B33, 35B40, 35K65, 35K55

متن کامل

Global Solutions and Blow-up Profiles for a Nonlinear Degenerate Parabolic Equation with Nonlocal Source

This paper deals with a degenerate parabolic equation vt = ∆v + av1 ∥v∥1 α1 subject to homogeneous Dirichlet condition. The local existence of a nonnegative weak solution is given. The blow-up and global existence conditions of nonnegative solutions are obtained. Moreover, we establish the precise blow-up rate estimates for all the blow-up solutions.

متن کامل

Blow-up for Degenerate and Singular Nonlinear Parabolic Systems with Nonlocal Source

Existence of a unique classical nonnegative solution is established and sufficient conditions for the solution that exists locally or blows up in finite time are obtained for the degenerate and singular parabolic system x1ut − (x1ux)x = ∫ a 0 g(v(x, t))dx, x2vt − (x2vx)x = ∫ a 0 f(u(x, t))dx in (0, a) × (0, T ), where T ≤ ∞, a ≥ 0 are constants, f , g are given functions. Furthermore, under cer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010